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Image	Data	Compression
Data	compression allows to save	storage space as well as transmissian
capacity for digital/discrete data.	Therefore,	the datawill	be rearranged in	a	
new structurewith needs less storage than the former one.	

Image	data compression is important for:
• Image	archives e.g large	satellite images
• Image	transmission e.g.	over the internet
• Multimedia	applications e.g.	desktop editing

Image	data compression exploits redundancy formore efficient coding:
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Different	Kinds	of Compression
Lossless compression:
• Original	data may be reconstructed exactly from the

compressed data.
• Examples:

– File	compression,	e.g.	ZIP,	GZ	etc.
– Image	formats:	TIFF	and PNG

Lossy compression:
• Original	datenmay be reconstructed approximately from the

compressed data.
• Examples:

– JPEG	image files
– DVDs	and Blu-Rays
– MP3	audio files
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Run	Length Coding

Images	with repeatinggreyvalues along rows (or columns)	can be
compressed by storing "runs"	of identical greyvalues in	the format:	

For B/W	images (e.g.	fax	data)	another run length code is used:	
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greyvalue1 repetition1 greyvalue2 repetition2 •	•	•

row # column#	
run1	begin

column#	
run1	end

column#	
run2	begin

column#	
run2	end •	•	•

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1
2
3

Run	length code:

(0	3	5	9	9)
(1	1	7	9	9)
(3	4	4	6	6	8	8	10	10	12	14)
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Probabilistic Data	Compression
A	discrete image encodes information redundantly if

1.	the greyvalues of individual	pixels are not	equally probable
2.	the greyvalues of neighbouringpixels are correlated

Information	Theory provides limits forminimal	encodingof probabilistic
informationsources.
Redundancy of the encodingof individual	pixelswith G	greylevels each:
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H = P(g) log2

1
P(g)g=0

G−1
∑

numberof bits used for each pixelb = log2G!" #$=

The	entropy of a	pixel sourcewith equally probable	greyvalues is equal to the
numberof bits required for coding.	

r  =  b -  H
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H =	 entropy of pixel source
= mean numberof bits required to encode

information of this source



Huffman Coding I

The	Huffman codingscheme provides a	variable-length code
with minimal	average code-word length,	i.e.	least	possible
redundancy,	for a	discretemessage source.	
(Here messages are greyvalues)

Algorithm:
1. Sort messages along increasingprobabilitiessuch	that g(1) and g(2) are

the least	probable	messages
2. Assign 1	to codeword of g(1) and 0	to the code word of g(2).
3. Merge g(1) und	g(2) to one newmessage by adding their probabilities.
4. Repeat	steps 1	– 4	until a	singlemessage is left.
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Huffman Coding II

Example:

Resultierende	Codierungen:
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Message Probability
g(5) 0.30
g(4) 0.25
g(3) 0.25
g(2) 0.10
g(1) 0.10

0

1
0.55

0

1
0.20

0

1

0.45

0

1

Message Probability Coding

g(5) 0.30 00
g(4) 0.25 01
g(3) 0.25 10
g(2) 0.10 110
g(1) 0.10 111

Entropy:	H= 2.185

Mean codeword length:	2.2
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Statistical	Dependence
An	image may be modelled as a	set of statistically dependent random variables	with a	
multivariate	distribution

Often the exact distribution is unknown and only correlations can be (approximately)	
determined.

Correlation of two variables:	 Covariance of two variables:	

Attention:	Uncorrelated variables	need not	be statistically independent:

But:	For Gaussian random variables,	uncorrelatedness implies statistical independence.	 	
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Covariance matrix

E xix j!" #$= 0 ⇒ p xix j( ) = p xi( ) ⋅ p x j( )

p x( ) = p x1,x2 ,…,xN( )
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Karhunen-Loève Transform
Determine uncorrelated variables	 fromcorrelated variables	 by a	linear	
transformation.

• An	orthonormalmatrixAwhich diagonalizesthe real	symmetric
covariancematrixV always exists.

• A	is the matrix of eigenvectors of V, D is thematrix of corresponding
eigenvalues.

Reconstruction of from using:

Note:	If is viewed as a	point in	n-dimensional	Euclidean space,	thenA
defines a	rotated coordinate.
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D is a	diagonal	matrix

(also	known as Hotelling Transform	or Principal Components	Analysis)
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Compression and Reconstruction using the
Karhunen-Loève Transform

Let us assume that the Eigenvalues						and the corresponding Eigenvectors of A are
sorted descending:

may be transformated into a	K-dimensional	vector , with K < N using a		
transformation matrix AK,	which contains only the first K Eigenvectors of A,	which
correspond to the K largest Eigenvalues:

The	approximate reconstruction minimizes the – mean square error (MSE)	of a	
representation wit K	dimensions:

Thus,							is representing a	lossy data compression .
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Eigenvectors and Eigenvalues				are defined by
and my be estimated by solving:

.

There exist fast	solution methods for the Eigenvalues	
of real	symmetric matrices.
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Illustration	of Minimum-loss
Dimension	Reduction

Using the Karhunen-Loève transform,	data compression is achieved by
• changing (rotating)	 the coordinate system
• omitting the least	informative	dimension(s)	 in	the new coodinate system
Example:
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Numerical Example for
Karhunen-Loève Compression

Given:

Eigenvalues	and eigenvectors

Compression intoK=2	dimensions

Reconstruction fromcompressed values
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Note	the discrepancies between the
original	and the approximated
values:
x1´= 0,5 x1 - 0,43 x2 - 0,25 x3

x2´= -0,085 x1 - 0,625 x2 + 0,39 x3

x3´= 0,273 x1 + 0,39 x2 + 0,25 x3

N = 3
!xT = x1  x2  x3( )
!m = 0

V =
2 −0.866 −0.5

−0.866 2 0
−0.5 0 2

"

#

$
$
$

%

&

'
'
'

V =
0.707 0 0.707
−0.612 0.5 0.621
−0.354 −0.866 0.354

"

#

$
$
$

%

&

'
'
'

det(V −λI ) = 0   ⇒   λ1 = 3,  λ2 = 2,  λ3 =1  

!y2 = A2
!x = 0.707 −0.612 −0.354

0 0.5 −0.866

"

#
$

%

&
'
!x

!
!x = AT

2
!y =

0.707 0
−0.612 0.5
−0.354 −0.866

#

$

%
%
%

&

'

(
(
(

!y

12.11.15 University of Hamburg, Dept. Informatics


