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Image Data Compression

Data compression allows to save storage space as well as transmissian
capacity for digital/discrete data. Therefore, the data will be rearrangedin a
new structure with needs less storage than the former one.

Image data compression is important for:

* Image archives e.g large satellite images
* Image transmission e.g. over the internet
 Multimediaapplications e.g. desktop editing

Image data compression exploits redundancy for more efficient coding:

— dataredundancy reduction — Transmission,

storage,
archiving

Digital
image

G reconstruction —
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Different Kinds of Compression

Lossless compression:

e Original data may be reconstructed exactly from the
compressed data.
 Examples:

— File compression, e.g. ZIP, GZ etc.
— Image formats: TIFF and PNG

Lossy compression:

* Original daten may be reconstructed approximatelyfrom the
compressed data.

 Examples:

— JPEG image files
— DVDs and Blu-Rays
— MP3 audiofiles
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Run Length Coding

Images with repeatinggreyvalues along rows (or columns) can be
compressed by storing "runs" of identical greyvalues in the format:

greyvaluel | | repetitionl greyvalue2 | | repetition2 ooo

For B/W images (e.g. fax data) another run length code is used:

row # column# column# column# column#
runl begin runlend run2 begin run2 end

0 12 3 4 5 6 7 8 9 10 11 1213 14 15 Run length code:

(035909)
(11799)
(3446688101012 14)

w N = O
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Probabilistic Data Compression

A discreteimage encodes information redundantly if
1. the greyvalues of individual pixels are not equally probable
2. the greyvalues of neighbouring pixels are correlated

Information Theory provides limits for minimal encoding of probabilistic
informationsources.

Redundancy of the encoding of individual pixels with G greylevels each:

=b-H b= [log2 G] = number of bits used for each pixel
H= E P(g) log, Pl H = entropy of pixel source
(8) = mean number of bits required to encode

information of this source

The entropy of a pixel source with equally probable greyvalues is equal to the
number of bits required for coding.
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Huffman Coding |

The Huffman codingscheme provides a variable-length code
with minimal average code-word length, i.e. least possible
redundancy, for a discrete message source.

(Here messages are greyvalues)

Algorithm:

1. Sort messages alongincreasing probabilities such that g”’ and g are
the least probable messages

2. Assign 1 to code word of g” and 0 to the code word of g(?.
Merge g und g® to one new message by addingtheir probabilities.

4. Repeatsteps1—4untilasingle message is left.
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Huffman Coding Il

Example:
Message Probability 0
g 0.30 0.55 0
g® 0.25 1
g 0.25 0
0 0.45 1
g 0.10 1 0.20 )
oV 0.10 —
Resultierende Codierungen:
Message Probability Coding
Entropy: H=2.185
g 0.30 00
g 0.25 10 Mean code word length: 2.2
e 0.10 110
o) 0.10 111

12.11.15

University of Hamburg, Dept. Informatics




IP1 — Lecture 8: Image compression 1

Statistical Dependence

An image may be modelled as a set of statistically dependent random variables with a
multivariate distribution p(¥)=p(x,.x,,....x, )

Often the exact distribution is unknown and only correlations can be (approximately)
determined.

Correlation of two variables: Covariance of two variables:
E[xl.xj] =c, E[(xl. —u)(x; - Mj)] =v, Wwith y, =mean of x,
¢ S G Vil V2o Vi3
E[)?fT]= Cyy Cpn Gy E[(f—ﬁ)(f—ﬁ)T]= Vor Voo V3
C, €, Cy Vi Vi Vag
“Correlation matrix Covariance matrix

Attention: Uncorrelated variables need not be statistically independent:
B[xn -0 # plx)=pls) lx)

But: For Gaussian random variables, uncorrelatedness implies statistical independence.
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Karhunen-Loeve Transform

(also known as Hotelling Transform or Principal Components Analysis)

Determine uncorrelated variablesy from correlated variables X bya linear
transformation.

y=A4(%-5)

E[)? )7T]=AE[(55—@)(55_,1)T]AT —AVAT =D D is a diagonal matrix

 Anorthonormalmatrix A which diagonalizesthe real symmetric
covariance matrix J always exists.

 Aisthe matrixof eigenvectors of J/ D is the matrix of corresponding
eigenvalues.

Reconstruction of x¥ from y using:x=A"y + i

Note: If X is viewed as a pointin n-dimensional Euclidean space, then 4
defines a rotated coordinate.
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Compression and Reconstruction using the
Karhunen-Loéeve Transform

Let us assume that the Eigenvalues )Ll_ and the corresponding Eigenvectors of 4 are
sorted descending: )Ll > )Lz > .. > )LN

A 0 0 Eigenvectorsa and Eigenvalues A are defined by
01 1 0 V a=Aa and my be estimated by solving:
D= 2 det(V - A1)=0.
0 0 /13 There exist fast solution methods for the Eigenvalues
of real symmetric matrices.

X may be transformated into a K-dimensional vector Y, With K < N using a

transformation matrix Ag, which contains only the first K Eigenvectors of 4, which
correspond to the K largest Eigenvalues:

V=4, (%-0)
The approximate reconstruction X' minimizes the — mean square error (MSE) of a
representation wit K dimensions:

X'=A4,y, +l

Thus, )7K is representing a lossy data compression .
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lHlustration of Minimum-loss
Dimension Reduction

Using the Karhunen-Loeve transform, data compression is achieved by
e changing (rotating) the coordinate system

e  omitting the leastinformative dimension(s) in the new coodinate system

Example:

N A X) . ‘/vyl A X>
Y2 \\ °* o~ . °
o ° °

\ o ~ © o®
\ /(0 ° ‘o'

NP 2

”

/ \ » xl > x]

”

=

Vi
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Numerical Example for
Karhunen-Loeve Compression

Given: N=3 2 ~0.866 -0.5
x! =(x1 X, x3) V=] -0.866 2 0
720 -05 0 2

Eigenvalues and eigenvectors
0.707 0 0.707

det(V-AD=0 = A =3 A, =2, A,=1 V=| 0612 05 0621
~0354 -0.866 0.354

Compression intoK=2 dimensions

5 =A %= 0.707 -0.612 -0.354 | Note the discrepancies between the
0 0.5 -0.866 original and the approximated

values:

x;=05x;-043x,-0,25 x;3

X, =-0,085x; - 0,625 x, + 0,39 x3

x;3=0273x;+0,39x,+ 0,25 x;3

Reconstruction from compressed values

0707 0
¥=A"y=| 0612 05
~0.354 -0.866

<




